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It is important to know the distribution of the number n of particles 
per unit volume in discussing fluidized-bed processes in chemical 
plant. The distribution has often been examined qualitatively, but 
relatively few papers contain quantitative results. 

The variation in n with height in the bed approaches uniformity 
at low flow speeds; n decreases exponentially with height at speeds 
approaching the limit for loss of particles. 

Here a kinetic model [1, 2] for a fluidized bed is used to examine 
n as a function of height for a gas flow. The theoretical conclusions 
are in good general agreement with the experimental evidence. 

1. Formulation of the problem. We consider the assembly of solid 
particles and the gas flow as two interacting continuous media. The 
particles are considered as resembling a gas. 

The complete equatiom of hydrodynamics have been derived [2] 
for such a system; they differ from similar equations derived elsewhere 
[3, 4] in having a more complicated structure for the stress tensor for 
the pseudogas and in requiring the use of an equation for the change 
in the rms speed of the random particle motion (the pseudotempera- 
ture); the latter was previously [3, 4] neglected. See [2] concerning 
some other features of this model. 

Comider a bed of solid particles of diameter o, which has an ini- 
tial depth h and is laterally unbounded. A real bed can be represented 
in this schematic way only if the lateral size L >> h, when the effects 
of the walls can be neglected. We also assume that convective move- 
ment is absent and that the mean macroscopic velocity can be taken 
as zero. Some comments are made below on the stability of this state. 

The axes of the fixed Cartesian coordinate system are such that 
the xl-axis is perpendicular to the plane of the distribution grid at the 
base and is directed vertically upward, while the xz- and x~-axes lie 
in the plane of that grid. Then the dimensionless variables 

vo (i.i) Xl=h~, O~OavoQ2T, N-~-nv , ,  x - -  

give us the following system of hydrodynamic equations: 
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3 d [A(N) dT ]  N 
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in which 

56 Q~'Pd tSvoPo 
~ = t ~ g ~ '  K - -  t8~'opoH(Bo)' 0 o =  a2p----~-' 

g Qz 
= Q~oH (Ro)' Ro = ,~---~, 

r Ro//" (Ro)] 
L(Ro) = [4.75-- J' (1.3) 

where v, is the volume per particle in close packing in space, v0 is 
the volume of a particle, Q is the volume of gas flowing through unit 
cross section of the grid in unit time, /% is the gas density, Pd is par- 
ticle density, ya is the kinematic viscosity of the gas, and g is the 
acceleration due to gravity. 
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The forms of A(N), P2(N), and Ps(N) have been given [2]. We use a 
semiempiricaI relation [5] for the force of interaction between the 
components, which gives H(R0) as 

- (R0)=, + CRo + 200R0) 

The basis for this relation has been discussed [6,fl]. 
The problem is to find a solution to (1.2) that satisfies the condi- 

tions for conservation of the number of particles in the bed: 

co (1.4) 

~ N ( z )  = t .  dx 
0 

We must also specify conditions for the pseudotemperature T at 
the boundary with the grid. A special discussion is needed to establish 
the form of these conditions, and the exact form of the conditions is 
not relevant to this paper. 

2. Bed with large initial h. If o ~ lO'Z cm and h ~ 10 z cm, while 
4 u 0 ~ I0 -z poise, Po/Pd "~ 10"~, and Q ~ 10 z cm/sec, we have K I0 , 

'~ 10 "4 I K~ '~ 1, K~ 2 "~ 10-4.  We n e g l e c t  t e r m s  of  o rder  ~ and  K~ 2 

to get 

T = To (N), (2.1) 

dx 
dN = K~DL (Ro) • (N) [t --  T (t - -  xN)] "4"75, 

in which A(N) is a function whose explicit form is easily established. 
Figure la, b shows the behavior of the right-hand side of (2.1) for 

various 7. The point No is deduced from the condition A(N0) = 0. 
Equation (2.1) resembles (1.2) in having two exact solutions: 

Nz ~ 0, N2 ~ :r - -  u (2.2) 

but one of these does not satisfy (1.4). Equation (2.1) will give an ad- 
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equate approximation only for N >> ']~'; the terms on the left in the 
first equation in (1.2) are of like order for smaller N. If the appropri- 
ate correction is included, the behavior of A(N) near N = 0 alters as 
shown by the dashed line in Fig. la,  b. It can be shown that the re- 
sulting singularity in the behavior is summable and that 

N 

N ~ - d N < o ~  (N>O). 

0 

Consider the form of the N(x) defined by (2.1) subject to (1.4). 

The behavior of A(N) for y < 1 indicates thai there is no solution 

that satisfies (1.4), which means physically that the fluidized bed can- 

not exist at such high Q, since these are such as to carry off even 
single particles. 

Also, if 

t < y < Yo = ( t  - -  x, No) -~'~6, ( 2 . 3 )  

there is a continuous solution to (2.1) that satisfies (t.4), in which case 
Fig. 2a shows N(x). 

If, on the other hand, 

Y0 < Y < Ymax = (t --  x) -4.~a, (2.4) 

there is no continuous solution to (2.1) that satisfies (1.4). To derive 
the appropriate discontinuous solution we make the following change 
of variable in (1.2): 

x '  = z~ -'1=. (2.5) 

We now discard terms of order ~ to get 

N T P ~ ( N )  = (t -- N) p~, (2.6) 

3 . d r A ( N )  1, d T - I  
1-'6 g" ~ [1 ~---'~-N T T / '  dZ'J ----- N (1 -- • -2,''~s (T -- To), 

in which P0 is a constant that must be determined during the solution 
of the problem. 

If x '--~ e"*, the system will take up a definite condition and dT/dx'  
approaches zero.* Let Ne and Tc be the values of N(x') and T(x') for 
x'--* --~and let N r and T r be the same for x'--~ "% It can be shown 
from (2.6) that there exists a pair of values N c > N r such as to satisfy 

NcTo (We) P2 (No) N r T o  (Nr) P2 (Nr) (2,7) 
P o ~  t __ N c  ~ t __ N r  , , 

~ A S  
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where 

r~ = To(ND, f~ = ro(N~), (2.8) 

and Nc may be chosen arbitrarily in the range [No, 1]. We note also 
that Nr -~ 0 if Nc ~ 1. We return to (2.1) to find that 

N c = n-~(i --  y-0.21), (2.9) 

and for P0 we get 

__ ,[-0.21 ( 2 . 1 0 )  
X po ---- • _ (t -- f~ '~ )  

X To [• (i ~-~ P~ [x -1 (i "r-~m)l 

The function N(x) then takes the fozm shown in Fig. 2b. For y = 
= Ymax, which corresponds to the minimum possible Q, N(x) takes 
the form of a step function (Fig. 2c). 

This solution means that, for y > Y0, there is a sharp boundary be- 
tween the homogeneous part of the fluidized bed and the very dilute 
part. This boundary vanishes as Q increases and the bed becomes ev- 
erywhere inhomogeneous. This picture is in good qualitative agree- 
ment with the observed one apart from the region directly adjoining 
the grid [8], where the behavior of the particles is determined by the 
interaction with the grid and requires a special discussion outside the 

scope of this paper. 
Figures 3-6 give results calculated from 

A0 = [ T o ( N r ) -  To(Nc)] r '-l, 0 = To(N ) F "-1, (2.11) 

P~ = pov,  y -1  r = J/3 Dx2L(Ro)  . 

Constant D in these expressions has to be deduced by experiment. 
T0(N) has been derived in another way [9]. The numerical result are 
different because different equations of state were used for the pseudo- 
gas, namely gyring's equations in [9] and van tier Waats' equation 

here. 
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*This problem resembles that in deriving the relations at a density 

discontinuity via the Navier-Stokes equations for a viscous compreSs- 

ible gas. 
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Figure 7 illustrates clearly the region of existence of the fluidized 
bed and the region of existence of a homogeneous fhridized bed. We 
introduce 

(i - ( P d )  
NAr  Rmin --  t8 ~- 0.6 V (t - -  Z) 4' 5NAr' tSVo z k P0 ] '  

TO-1]V'Ar ! 

~ * = i 8 §  

~vA~ 
Rmax = "t8 -}- 0.6 I/-N~Ar" (2.12) 

The Archimedes number NAt will be fixed for given properties of 
the bed and gas flow. We draw in Fig. 7 a straight line NAt parallel to 

the R-axis to get the region of existence of the fluidized bed and the 
critical value R that divides this region into two parts: Rmin < R < R,, 
where a state of uniform density exists, and P,, < R < Rmax, where 
the bed is iuhomogeneous throughout its thickness. 

The following are some properties of the upper bound to the ex- 
istence of a homogeneous state. The mean kinetic energy of a par- 
ticle alters across this boundary x = x0 (Fig. 8), and the following 
amount of work must be performed to take a particle from the region 

X < X 0 t o  X > X0: 

6A = T r -  To- (2.13) 

3. Distribution for Q large. The previous section shows that N will 
be inhomogeneous throughout the bed if Q is large enough. Also, the 
maximum N will not exceed Nz for 1 < 7 < Y0, which N z --~ 0 for 7 "~ 1. 
We put 

r = To(N)E (3.i) 

and expand the functions of N in (1.2) as series, retaining only terms 
of the least order of smallness in N. We get 

d (NE..,/~) = (t - -  T) N, a) = u [DL (Ro)]%, (3.2) co~ 

We seek a solution to (3.2) in the form 

E = eonst, N = Ae -Ax.  (3.3) 

We substitute (3.3) into (3.2) to get equations for E and A. We 
eliminate A to get 

9KA (0) (T --  t) ~g% = (E - -  t ) .  (3.4) 
8(0 

Also, 7 is close to unity for Q large, since Q is close to Qmax and 

(3.5) 9 KA (0) 
E = t @ 8co (Qmax~ (T -- t) ~ ~- O (I ~ - t 1~). 

Similarly, 

(3.6) T - - I  
A =r  (qm~) + o (I ~ - -  119. 

We therefore finally get 

.IV = Ae -Ax,  T = ~ (oAe -2Ax, Pn = A{o.)e -Ax.  (3.q) 

c 

', 1 < 
,4mi z N. /?m~x 

Fig. 7 
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The calculations can be compared with experiment [10]. Figure 9 
shows A as a function of Q for beds composed of identical patticles but 
having different initial thicknesses, where the points ate from [i0], 
while the solid lines are theoretical relations derived as follows. We 
expand y - i as a power series in (Qmax -Q) /Qmax and stop at terms 
of the first order of smallness to get 

1 2 y - ~ ( h ~  • [ 5-75--L(Rmax) ] Qraax-- q_. (3.8) 

Figure 9 shows that A is very nearly linearly dependent on Q, and 
also [10] that A is very much dependent on the initial depth (the upper 
line in Fig. 9 corresponds to the smaller thickness), which arises for 
the following reasons. The gas pressure difference across the bed in- 
creases with the initial thickness. The gas density has a nonlinear re- 
lation to the pressure, so the mean gas density in the bed is dependent 
on the initial thickness, and hence Qmax is affected. We can esti- 
mate the density change as follows. 

If we neglect the weight of the gas within the flnidized bed, the 
following [2] is the equation for conservation of momentum in pro- 
jection on a direction perpendicular to the grid: 

d [H -~ p -t- Pn] = Pa• (3.9) 
dxi 

in which 1I is the pressure in the gas flow, p is the pressure of the 
pseudogas, and Pit is the normal stress in the pseudogas. We integrate 
(3.9) with limits zero and infinity, using the dependence of p and Pit 
on N, to get by virtue of (3..4) that 

A ~  = r I  (p) lx~=o - n (p) I . . . .  = pdxgh. ( 3 . 10 )  

The pressure difference across the bed is independent of Q within 
the range in which the fluidized bed exists [11]. The p of (3.10) is 

the local gas density. 
Then the mean gas density in the bed is 

II'(po)(p [x=o --  P Ix=co) = Pd ugh. (3. i l)  

We assume that 11 = ap k. As 11(0) and 1](~o) are known, and the 
latter is small relative to pd~tgh, we finally get from (321) that 

Po ~" C(pd ugh) 1/~'' (3.i2) 

Constant c is dependent on the properties of the gas. 
This relationship gives a correct general description of the depen- 

dence of A on the initial thickness. 
4. Stability of the homogeneous state. The results of sections 2 

and 3 show that the particle distribution for Q small is very different 
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from that far Q large. Teclmical processes are usually conducted at 
low Q, so we consider only conditions such that there is a region of 
homogeneity in accordance with the conclusions of section 2. 

For Q small we have 

Po ~ I. (4.1) 
pggA 

Then i t  can be shown that the stability study of [2] for a simple 
model is entirely analogous to that for a homogeneous layer of con-  
siderable thickness when the complete  equations of hydrodynamics [2] 
are used. The homogeneous state is unstable, and the bed will neces-  
sarily give rise to convective motion of the particles. This instability 
has been observed repeatedly [11]. 

The characteristic forms of the convection are very much depen- 
dent on the details of the interaction with the wails and grid, as well 
as on the shape of the apparatus, the mode of distribution of the gas, 
era. The convection produces a change in the height distribution of 
the particles, but the effects are small  if O exceeds the min imum 
value orgy slightly. 

I am indebted to V. G. Levich for valuable discussions and to E. 
Markaryan and L. Kholod for assistance with the calculations. 
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